求大佬帮忙解一下这道微分方程的题目
2021-10-02
展开全部
P0(2,-1,3)
(x-1)/-1 = y/0 = (z-2)/2 =k
x=-k+1, y=0, z=2k+2
任何在(x-1)/-1 = y/0 = (z-2)/2 =k 上的点 A(-k+1, 0, 2k+2)
P0A =OA -OP0 = (-k-1, 1, 2k-1)
P0A. (-1,0,2)=0
(-k-1, 1, 2k-1).(-1,0,2)=0
k+1 +0 +2(2k-1) =0
5k-2=0
k=2/5
P0A = (-7/5 , 1 , -1/5)
垂直相交方程 : P0(2,-1,3) , 方向向量=P0A = (-7/5 , 1 , -1/5)
(x-2)/(-7/5) = (y+1)/1 = (z+3)/-(1/5)
(x-2)/7 = (y+1)/-5 = (z+3)/1
(x-1)/-1 = y/0 = (z-2)/2 =k
x=-k+1, y=0, z=2k+2
任何在(x-1)/-1 = y/0 = (z-2)/2 =k 上的点 A(-k+1, 0, 2k+2)
P0A =OA -OP0 = (-k-1, 1, 2k-1)
P0A. (-1,0,2)=0
(-k-1, 1, 2k-1).(-1,0,2)=0
k+1 +0 +2(2k-1) =0
5k-2=0
k=2/5
P0A = (-7/5 , 1 , -1/5)
垂直相交方程 : P0(2,-1,3) , 方向向量=P0A = (-7/5 , 1 , -1/5)
(x-2)/(-7/5) = (y+1)/1 = (z+3)/-(1/5)
(x-2)/7 = (y+1)/-5 = (z+3)/1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询