求大佬帮忙解一下这道微分方程的题目

 我来答
十全小秀才

2021-10-02 · 三人行必有我师焉!!
十全小秀才
采纳数:2252 获赞数:9377

向TA提问 私信TA
展开全部

解:设两直线的交点为(a,b,c)

则有(a-1)/(-1)=b/0=(c-2)/2,且

(a-2)×(-1)+[b-(-1)]×0+(c-3)×2=0;

化为b=0,2(a-1)=2-c,2(c-3)-(a-2)=0

b=0,2a+c=4,2c-a=4,得:a=0.8,

c=2.4,该点为(0.8,0,2.4);所求直

线方程为(x-2)/(2-0.8)=(y+1)/(-1-0)=

(z-3)/(3-2.4),即(x-2)/1.2=(y+1)/(-1)=

(z-3)/0.6,化为(x-2)/6=(y+1)/(-5)=

(z-3)/3

匿名用户
2021-10-02
展开全部

1、求解此题最关键是找垂足点P。对于这道题目求解过程见上图。

2、这道题目不是微分方程的题目,属于空间解析几何的题目。

3、求解这道不是微分方程的题目的思路:

先求解出过已知点与已知直线相垂直的平面,然后求出此平面与已知直线的交点p,这样,就可以求出本题目直线的方向向量了,最后,由直线的点向式方程,就得所求直线的方程了。

具体的求解这道非微分方程而是空间几何问题,求解的详细步骤及说明见上。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2021-10-02 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:1.9亿
展开全部
P0(2,-1,3)
(x-1)/-1 = y/0 = (z-2)/2 =k
x=-k+1, y=0, z=2k+2
任何在(x-1)/-1 = y/0 = (z-2)/2 =k 上的点 A(-k+1, 0, 2k+2)
P0A =OA -OP0 = (-k-1, 1, 2k-1)
P0A. (-1,0,2)=0
(-k-1, 1, 2k-1).(-1,0,2)=0
k+1 +0 +2(2k-1) =0
5k-2=0
k=2/5
P0A = (-7/5 , 1 , -1/5)
垂直相交方程 : P0(2,-1,3) , 方向向量=P0A = (-7/5 , 1 , -1/5)
(x-2)/(-7/5) = (y+1)/1 = (z+3)/-(1/5)
(x-2)/7 = (y+1)/-5 = (z+3)/1
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式