求(x^(1+x))/((1+x)^x) - x/e 在x 正无穷大的极限, 最好有详细过程

 我来答
南暎力气
2020-05-12 · TA获得超过1068个赞
知道小有建树答主
回答量:1796
采纳率:100%
帮助的人:8.3万
展开全部
这里先用等价无穷小替换,再用洛必达法则
(1+x)^(1/x)=e^[ln(1+x)/x],分子化为e×{e^[ln(1+x)/x-1]-1}。x→0时,e^[ln(1+x)/x-1]-1等价于ln(1+x)/x-1,所以
原极限=e×lim
[ln(1+x)/x-1]/x=e×lim
[ln(1+x)-x]/x^2=e×lim
[1/(1+x)-1]/(2x)=e×lim
[(-x)/(1+x)]/(2x)=e×lim
(-1)/[2(1+x)]=-e/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式