向量内积公式是什么?

 我来答
当代教育科技知识库
高能答主

2021-04-14 · 擅长科技新能源相关技术,且研究历史文化。
当代教育科技知识库
采纳数:1828 获赞数:387383

向TA提问 私信TA
展开全部

向量内积公式如下所示:

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。



扩展资料:

数量积的性质:

设a、b为非零向量,则:

①设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a|cosθ。

②a⊥b=a·b=0。

③当a与b同向时,a·b=|a||b|;当a与b反向时,a·a=|a|2=a2或|a|=√a·a。

④|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立。

非酋肉嘎嘎2b
2023-07-22 · TA获得超过121个赞
知道小有建树答主
回答量:2920
采纳率:100%
帮助的人:35.1万
展开全部
向量的内积,也称为点积或数量积,是一种运算,用于计算两个向量之间的乘积。对于两个 n 维向量 u = (u1, u2, ..., un) 和 v = (v1, v2, ..., vn),它们的内积可以表示为以下公式:

u · v = u1 * v1 + u2 * v2 + ... + un * vn

其中,u · v 表示向量 u 和向量 v 的内积。对应位置上的元素相乘,然后将结果相加,即得到了两个向量的内积。

内积的计算结果是一个标量(即实数),而不是一个向量。内积有许多重要的应用,例如计算向量的模长、计算夹角、投影等,它在向量分析和线性代数中都有广泛的应用。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
文曲a
2023-07-25 · TA获得超过6017个赞
知道大有可为答主
回答量:6154
采纳率:100%
帮助的人:404万
展开全部
向量的内积,也称为点积或数量积,是向量运算中的一种重要运算。对于两个 n 维向量 a 和 b,向量的内积可以通过以下公式来表示:
a · b = a1 * b1 + a2 * b2 + ... + an * bn
其中,a · b 表示向量 a 和向量 b 的内积,a1, a2, ..., an 和 b1, b2, ..., bn 表示向量 a 和向量 b 的各个分量。
内积的计算方法是将两个向量对应分量逐一相乘,并将结果相加。内积的结果是一个标量(数值),而不是向量。
内积具有多种重要的性质,包括交换律、分配律和结合律等。它在向量的长度、角度、投影等方面有广泛的应用,例如计算向量的模(长度)、判断向量的正交性、计算向量之间的夹角,以及计算向量在某一方向上的投影
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式