i的平方等于-1吗?

 我来答
小知爱娱乐啊
高粉答主

2021-04-14 · 需要的话来找我哦,随时方便
小知爱娱乐啊
采纳数:780 获赞数:120153

向TA提问 私信TA
展开全部

i的平方是等于-1的。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字,后来发现虚数a加b乘i的实部a可对应平面上的横轴虚部b与对应平面上的纵轴。

这样虚数a加b乘i可与平面内的点a,b相对应,虚数可以指不实的数字或并非表明具体数量的数字,在数学中,虚数就是形如a加b乘i的数,其中a,b是实数,且b不等于0时,i的平方等于负1。

扩展资料:

虚数的起源

要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。有理数是伴随人们的生产实践而产生的。

无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。

非酋肉嘎嘎2b
2023-07-21 · TA获得超过121个赞
知道小有建树答主
回答量:2920
采纳率:100%
帮助的人:35万
展开全部
是的,i的平方等于-1。在复数中,虚数单位i定义为√(-1),即i^2 = -1。这是复数系统的基本性质之一。根据这个定义,我们可以得出i的各次幂,例如:

i^0 = 1
i^1 = i
i^2 = -1
i^3 = i^2 * i = -1 * i = -i
i^4 = i^2 * i^2 = (-1) * (-1) = 1

以此类推,i的各次幂形成一个周期性序列,其中i^2 = -1是其中一个基本关系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
284643915

2023-07-29 · 超过54用户采纳过TA的回答
知道答主
回答量:1572
采纳率:37%
帮助的人:32.5万
展开全部
是的,数学中定义了一个虚数单位i,它满足条件i^2 = -1。在复数系统中,虚数单位i被用来表示那些平方根为负数的数,从而扩展了实数系统。虚数单位i在许多数学和科学领域中都有广泛的应用,如电工学、量子力学等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
耪典葡列呀p
2023-07-20
知道答主
回答量:3
采纳率:0%
帮助的人:573
展开全部
对,i的平方等于-1 你真聪明
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
门野豆X
2023-07-23
知道答主
回答量:7
采纳率:0%
帮助的人:1282
展开全部
i是虚数的基本单位
i¹=i i²=-1 i³=-i
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式