第一个
Prove: ∫(0->π) f(sinx) dx = 2∫(0->π/2) f(sinx) dx
solution:
∫(0->π) f(sinx) dx
把定积分分开2段
=∫(0->π/2) f(sinx) dx +∫(π/2->π) f(sinx) dx
利用 x=π-u
=∫(0->π/2) f(sinx) dx +∫(π/2->0) f(sin(π/2-u)) (-du)
=∫(0->π/2) f(sinx) dx +∫(0->π/2) f(sinu) du
定积分的值跟自变量无关
=∫(0->π/2) f(sinx) dx +∫(0->π/2) f(sinx) dx
=2∫(0->π/2) f(sinx) dx
第二个
Prove: ∫(0->π) f(cosx) dx = ∫(0->π/2) f(cosx) dx +∫(0->π/2) f(-cosx) dx
∫(0->π) f(cosx) dx
把定积分分开2段
=∫(0->π/2) f(cosx) dx + ∫(π/2->π) f(cosx) dx
x=π-u
=∫(0->π/2) f(cosx) dx + ∫(π/2->0) f(cos(-u)) (-du)
=∫(0->π/2) f(cosx) dx + ∫(0->π/2) f(-cosu) du
=∫(0->π/2) f(cosx) dx + ∫(0->π/2) f(-cosx) dx
你的证明基本正确
∫<0,π>f(cosx)dx=∫<0,π/2>f(cosx)dx+∫<0,π/2>f(-cosx)dx也成立。