如图,请问这个不定积分怎么求解呢?
3个回答
展开全部
I = ∫x|cosxsinx|dx = (1/2)∫x|sin2x|dx
当 2kπ ≤ 2x ≤ 2kπ+π, 即 kπ ≤ x ≤ kπ+π/2 时
I = (1/2)∫xsin2xdx = - (1/4)∫xdcos2x
= - (1/4)xcos2x + (1/4)∫cos2xdx = - (1/4)xcos2x + (1/8)sin2x + C
当 2kπ-π ≤ 2x ≤ 2kπ, 即 kπ-π/2 ≤ x ≤ kπ 时
I = - (1/2)∫xsin2xdx = (1/4)∫xdcos2x
= (1/4)xcos2x - (1/4)∫cos2xdx = (1/4)xcos2x - (1/8)sin2x + C。
当 2kπ ≤ 2x ≤ 2kπ+π, 即 kπ ≤ x ≤ kπ+π/2 时
I = (1/2)∫xsin2xdx = - (1/4)∫xdcos2x
= - (1/4)xcos2x + (1/4)∫cos2xdx = - (1/4)xcos2x + (1/8)sin2x + C
当 2kπ-π ≤ 2x ≤ 2kπ, 即 kπ-π/2 ≤ x ≤ kπ 时
I = - (1/2)∫xsin2xdx = (1/4)∫xdcos2x
= (1/4)xcos2x - (1/4)∫cos2xdx = (1/4)xcos2x - (1/8)sin2x + C。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
I = ∫x|cosxsinx|dx = (1/2)∫x|sin2x|dx
当 2kπ ≤ 2x ≤ 2kπ+π, 即 kπ ≤ x ≤ kπ+π/2 时
I = (1/2)∫xsin2xdx = - (1/4)∫xdcos2x
= - (1/4)xcos2x + (1/4)∫cos2xdx = - (1/4)xcos2x + (1/8)sin2x + C
当 2kπ-π ≤ 2x ≤ 2kπ, 即 kπ-π/2 ≤ x ≤ kπ 时
I = - (1/2)∫xsin2xdx = (1/4)∫xdcos2x
= (1/4)xcos2x - (1/4)∫cos2xdx = (1/4)xcos2x - (1/8)sin2x + C
当 2kπ ≤ 2x ≤ 2kπ+π, 即 kπ ≤ x ≤ kπ+π/2 时
I = (1/2)∫xsin2xdx = - (1/4)∫xdcos2x
= - (1/4)xcos2x + (1/4)∫cos2xdx = - (1/4)xcos2x + (1/8)sin2x + C
当 2kπ-π ≤ 2x ≤ 2kπ, 即 kπ-π/2 ≤ x ≤ kπ 时
I = - (1/2)∫xsin2xdx = (1/4)∫xdcos2x
= (1/4)xcos2x - (1/4)∫cos2xdx = (1/4)xcos2x - (1/8)sin2x + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询