一元线性回归模型有哪些基本假定?
1个回答
展开全部
一元线性回归模型通常有三条基本的假定:
1、误差项ε是一个期望值为零的随机变量,即E(ε)=0。这意味着在式y=β0+β1+ε中,由于β0和β1都是常数,所以有E(β0)=β0,E(β1)=β1。因此对于一个给定的x值,y的期望值为E(y)=β0+β1x。
2、对于所有的x值,ε的方差盯σ2都相同。
3、误差项ε是一个服从正态分布的随机变量,且相互独立。即ε~N(0,σ2)。独立性意味着对于一个特定的x值,它所对应的y值与其他2所对应的y值也不相关。
一元线性回归分析预测法
一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。
只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询