∫sin(lnx)/x^3dx
1个回答
展开全部
令A=∫sin(lnx)/x^3dx
=(-1/2)*∫sin(lnx)d(1/x^2)
=(-1/2)*sin(lnx)/x^2+(1/2)*∫(1/x^2)d[sin(lnx)]
=(-1/2)*sin(lnx)/x^2+(1/2)*∫cos(lnx)/x^3dx
=(-1/2)*sin(lnx)/x^2-(1/4)*∫cos(lnx)d(1/x^2)
=(-1/2)*sin(lnx)/x^2-(1/4)*cos(lnx)/x^2+(1/4)*∫(1/x^2)d[cos(lnx)]
=(-1/2)*sin(lnx)/x^2-(1/4)*cos(lnx)/x^2-(1/4)*∫sin(lnx)/x^3dx
=(-1/2)*sin(lnx)/x^2-(1/4)*cos(lnx)/x^2-(1/4)*A
4A=-2sin(lnx)/x^2-cos(lnx)/x^2-A
A=(-2/5)*sin(lnx)/x^2-(1/5)*cos(lnx)/x^2+C,其中C是任意常数
=(-1/2)*∫sin(lnx)d(1/x^2)
=(-1/2)*sin(lnx)/x^2+(1/2)*∫(1/x^2)d[sin(lnx)]
=(-1/2)*sin(lnx)/x^2+(1/2)*∫cos(lnx)/x^3dx
=(-1/2)*sin(lnx)/x^2-(1/4)*∫cos(lnx)d(1/x^2)
=(-1/2)*sin(lnx)/x^2-(1/4)*cos(lnx)/x^2+(1/4)*∫(1/x^2)d[cos(lnx)]
=(-1/2)*sin(lnx)/x^2-(1/4)*cos(lnx)/x^2-(1/4)*∫sin(lnx)/x^3dx
=(-1/2)*sin(lnx)/x^2-(1/4)*cos(lnx)/x^2-(1/4)*A
4A=-2sin(lnx)/x^2-cos(lnx)/x^2-A
A=(-2/5)*sin(lnx)/x^2-(1/5)*cos(lnx)/x^2+C,其中C是任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询