已知函数f(x)=ln(X^2+a)求函数f(x)图像上点A(t,ln(t^2+a)处的切线方程

 我来答
黑科技1718
2022-06-11 · TA获得超过5880个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.1万
展开全部
因为导数就是函数在某点的切线斜率,所以
ln(x^2+a)为复合函数,而复合函数f(g(x))'=f'(g(x))×g'(x)
所以他的导数为1/(x^2+a)×2x=2x/(x^2+a)
在点A的切线斜率为(2t)/(t^2+a)
因为它又经过点A,且斜率已知,所以可以用点斜式
求的(2t)/(t^2+a)×t+b=ln(t^2+a)
b=ln(t^2+a)-(2t)/(t^2+a)t
所以方程为y=kx+b=(2t)/(t^2+a)×x+ln(t^2+a)-(2t)/(t^2+a)t
=(2t)/(t^2+a)×(x-t)+ln(t^2+a)
综上所述,函数f(x)=ln(X^2+a)求函数f(x)图像上点A(t,ln(t^2+a)处的切线方程为y=(2t)/(t^2+a)×(x-t)+ln(t^2+a)
不懂可以问我!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式