概率论问题? 210
2个回答
展开全部
需要提及的是下面将要介绍的9个计算概率的定理与上面已经提及的事件的计算没有关系,所有关于概率的定理均由概率的3个公理得来,同时适用于包括拉普拉斯概率和统计概率在内的所有概率理论。
概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
两个不相关联的事件A,B同时发生的概率是:注意到这个定理实际上是定理6(乘法法则)的特殊情况,如果事件A,B没有联系,则有P(A|B)=P(A),以及P(B|A)=P(B)。观察一下轮盘游戏中两次连续的旋转过程,P(A)代表第一次出现红色的概率,P(B)代表第二次出现红色的概率,可以看出,A与B没有关联,利用上面提到的公式,连续两次出现红色的概率为:
概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
两个不相关联的事件A,B同时发生的概率是:注意到这个定理实际上是定理6(乘法法则)的特殊情况,如果事件A,B没有联系,则有P(A|B)=P(A),以及P(B|A)=P(B)。观察一下轮盘游戏中两次连续的旋转过程,P(A)代表第一次出现红色的概率,P(B)代表第二次出现红色的概率,可以看出,A与B没有关联,利用上面提到的公式,连续两次出现红色的概率为:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
给所有的抛硬币操作从1开始编号,显然先⼿者只可能在奇数(1,3,5,7…)次抛硬币得到苹果,⽽后⼿只可能在偶数次(2,4,6,8…)抛硬币得到苹果。设先⼿者得到苹果的概率为p,第1次抛硬币得到苹果的概率为1/2,在第3次(3,5,7…)以后得到苹果的概率为p/4(这是因为这种只有在第1次和第2次抛硬币都没有抛到正⾯(概率为1/4=1/2*1/2)的时候才有可能发⽣,⽽且此时先⼿者在此⾯临和开始相同的局⾯)。所以可以列出等式p=1/2+p/4,p=2/3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询