高中数学平面向量知识点总结

 我来答
名成教育17
2022-05-28 · TA获得超过5495个赞
知道小有建树答主
回答量:268
采纳率:0%
帮助的人:71.6万
展开全部

高中数学知识点之向量

1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。

2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。

3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。

注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。

4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。

5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

高中数学知识点之向量的计算

1.加法

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2.减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

加减变换律:a+(-b)=a-b

3.数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π

向量的数量积的运算律

a·b=b·a(交换律)

(λa)·b=λ(a·b)(关于数乘法的结合律)

(a+b)·c=a·c+b·c(分配律)

向量的数量积的性质

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式