梯形中位线定理证明是什么?
展开全部
如图,四边形ABCD是梯形,AD∥BC,E、F分别是AB、CD边上的中点,求证:EF∥AD,且EF=(AD+BC)/2:
证明:
连接AF并延长交BC的延长线于G。
∵AD∥BC
∴∠ADF=∠GCF
∵F是CD的中点
∴DF=FC
∵∠AFD=∠CFG
∴△ADF≌△GCF(ASA)
∴AF=FG,AD=CG
∴F是AG的中点
∵E是AB的中点
∴EF是△ABG的中位线
∴EF∥BG,EF=BG/2=(BC+CG)/2
∴EF=(AD+BC)/2
∵AD∥BC
∴EF∥AD∥BC
梯形中位线定理:
连接梯形两腰中点的线段叫做梯形的中位线,梯形的中位线平行于两底,并且等于两底和的一半。梯形的中位线L平行于底边,且其长度为上底加下底和的一半,用符号表示是:L=(a+b)/2。
黄先生
2024-12-27 广告
2024-12-27 广告
北京蓝宝、广州宏控、广州迈拓维矩、广州快捷等。在性价比方面,选择广州迈拓维矩矩阵切换器,性价比较高,6道测试工序,质量有保证。有以下优点:1.所有产品都是模块化设计,方便维护。2.矩阵都有输出长线驱动的设计,即插即用,不需要设置。3.软硬件...
点击进入详情页
本回答由黄先生提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询