蒙特卡洛方法原理是什么?
当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡罗方法基于这样的想法:假设你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
当你的豆子越小,撒的越多的时候,结果就越精确。借助计算机程序可以生成大量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的比例和坐标点生成范围的面积就可以求出图形面积。
原则上,蒙特卡罗方法可用于解决任何具有概率解释的问题。根据大数定律,由某个随机变量的期望值描述的积分可以通过取变量的独立样本的经验均值(也就是样本均值)来近似。
当变量的概率分布被参数化时,数学家经常使用马尔可夫链蒙特卡罗(MCMC)采样器。 中心思想是设计一个具有规定的平稳概率分布的明智马尔可夫链模型。
也就是说,在极限情况下,由 MCMC 方法生成的样本将是来自所需(目标)分布的样本。 通过遍历定理,通过MCMC 采样器的随机状态的 经验测量来近似平稳分布。
工作过程
使用蒙特卡罗方法估算π值. 放置30000个随机点后,π的估算值与真实值相差0.07%.
在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作:
1、用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。
2、用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。
2025-01-06 广告