导数公式高中是什么?
1个回答
展开全部
基本初等函数导数公式主要有以下:
y=f(x)=c (c为常数),则f'(x)=0
f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)
f(x)=sinx f'(x)=cosx
f(x)=cosx f'(x)=-sinx
f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)
f(x)=e^x f'(x)=e^x
f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)
f(x)=lnx f'(x)=1/x (x>0)
f(x)=tanx f'(x)=1/cos^2x
f(x)=cotx f'(x)=- 1/sin^2x
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询