n维向量的线性相关性问题如何证明的?
1个回答
展开全部
具体如下:
以n+1个n维向量作为列向量构成的矩阵的秩不超过n。
(矩阵的秩不超过其行数和列数中小的那个)。
所以 r(A)<=n。
所以 A 的列向量组的秩 <= n。
即 n+1个n维向量 的秩 <=n。
故线性相关。
在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立 [1] (linearly independent),反之称为线性相关(linearly dependent)。
例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。
定理
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。【个数大于维数必相关】。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询