收敛和极限的关系如下:
1、数列的收敛可以推导出来极限存在,而极限存在也可以推导出数列是收敛的,两者互为充要条件。
2、极限存在就是极限是某一个确定的值而非无穷大。
3、数列的收敛就是极限为某一个值。
函数极限与数列极限的关系
关于函数极限与数列极限的关系有一个定理,当X趋近于X0时,f(x)的极限是A的充分必要条件是:对任何收敛于X0的数列{xn}(xn不等于x0),都有当n趋近于无穷时,f(xn)的极限是A。
函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。在这一个变化过程中,发生变化的量叫变量,有些数值是不随变量而改变的,我们称它们为常量。