如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.

 我来答
游戏王17
2022-10-18 · TA获得超过893个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:65.7万
展开全部
证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1
2AD,CN=
1
2BC,
∴AM=CN,
在△MAB和△NDC中,


AB=CD
∠A=∠C=90°
AM=CN,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,


DM=BN
DQ=BP
∠MDQ=∠NBP,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1
2AN,
∴MQ=
1
2BM,
∵MP=
1
2BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式