勾股数有哪些规律

 我来答
清宁时光17
2022-11-10 · TA获得超过1.4万个赞
知道大有可为答主
回答量:7201
采纳率:100%
帮助的人:42.1万
展开全部
问题一:勾股数有什么规律?? 在直角三角形中,若以a、b表示两条直角边,c表示斜边,勾股定理可以表述为a2+b2=c2。
满足这个等式的正整数a、b、c叫做一组勾股数。
例如(3、4、5),(5、12、13),(6、8、10),(7、24、25)等一组一组的数,每一组都能满足a2+b2=c2,因此它们都是勾股数组(其中3、4、5是最简单的一组勾股数)。显然,若直角三角形的边长都为正整数,则这三个数便构成一组勾股数;反之,每一组勾股数都能确定一个边长是正整数的直角三角形。因此,掌握确定勾股数组的方法对研究直角三角形具有重要意义。
1.任取两个正整数m、n,使2mn是一个完全平方数,那么
c=2+9+6=17。
则8、15、17便是一组勾股数。
证明:
∴a、b、c构成一组勾股数
2.任取两个正整数m、n、(m>n),那么
a=m2-n2,b=2mn,c=m2+n2构成一组勾股数。
例如:当m=4,n=3时,
a=42-32=7,b=2×4×3=24,c=42+32=25
则7、24、25便是一组勾股数。
证明:
∵ a2+b2=(m2-n2)+(2mn)2
=m4-2m2n2+n4+4m2n2
=m4+2m2n2+4n2
=(m2+n2)2
=c2
∴a、b、c构成一组勾股数。
3.若勾股数组中的某一个数已经确定,可用如下的方法确定另外两个数。
首先观察已知数是奇数还是偶数。
(1)若是大于1的奇数,把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数。
例如9是勾股数中的一个数,
那么9、40、41便是一组勾股数。
证明:设大于1的奇数为2n+1,那么把它平方后拆成相邻的两个整数为
(2)若是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1所得到的两个整数和这个偶数构成一组勾股数。
例如8是勾股数组中的一个数。
那么8、15,17便是一组勾股数。
证明:设大于2的偶数2n,那么把这个偶数除以2后再平方,然后把这个平方数分别减1,加1所得的两个整数为n2-1和n2+1
∵(2n)2+(n2-1)2=4n2+n4-2n2+1
=n4+2n2+1
=(n2+1)2
∴2n、n2-1、n2+1构成一组勾股数。

问题二:勾股数有什么规律? 在直角三角形中,若以a、b表示两条直角边,c表示斜边,勾股定理可以表述为a2+b2=c2。 满足这个等式的正整数a、b、c叫做一组勾股数。 例如(3、4、5),(5、12、13),(6、8、10),(7、24、25)等一组一组的数,每一组都能满足a2+b2=c2,因此它们都是勾股数组(其中3、4、5是最简单的一组勾股数)。显然,若直角三角形的边长都为正整数,则这三个数便构成一组勾股数;反之,每一组勾股数都能确定一个边长是正整数的直角三角形。因此,掌握确定勾股数组的方法对研究直角三角形具有重要意义。 1.任取两个正整数m、n,使2mn是一个完全平方数,那么 c=2+9+6=17。 则8、15、17便是一组勾股数。 证明: ∴a、b、c构成一组勾股数 2.任取两个正整数m、n、(m>n),那么 a=m2-n2,b=2mn,c=m2+n2构成一组勾股数。 例如:当m=4,n=3时, a=42-32=7,b=2×4×3=24,c=42+32=25 则7、24、25便是一组勾股数。 证明: ∵ a2+b2=(m2-n2)+(2mn)2 =m4-2m2n2+n4+4m2n2 =m4+2m2n2+4n2 =(m2+n2)2 =c2 ∴a、b、c构成一组勾股数。 3.若勾股数组中的某一个数已经确定,可用如下的方法确定另外两个数。 首先观察已知数是奇数还是偶数。 (1)若是大于1的奇数,把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数。 例如9是勾股数中的一个数, 那么9、40、41便是一组勾股数。 证明:设大于1的奇数为2n+1,那么把它平方后拆成相邻的两个整数为 (2)若是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1所得到的两个整数和这个偶数构成一组勾股数。 例如8是勾股数组中的一个数。 那么8、15,17便是一组勾股数。 证明:设大于2的偶数2n,那么把这个偶数除以2后再平方,然后把这个平方数分别减1,加1所得的两个整数为n2-1和n2+1 ∵(2n)2+(n2-1)2=4n2+n4-2n2+1 =n4+2n2+1 =(n2+1)2 ∴2n、n2-1、n2+1构成一组勾股数。

问题三:勾股数都具有哪些规律 两个小数的平方和是大数的平方
我们老师是这样讲的 应该对的

问题四:勾股数有哪些 常见的勾股数及几种通式有:
(1) (3, 4, 5), (6, 8,10) … …
3n,4n,5n (n是正整数)
(2) (5,12,13) ,( 7,24,25), ( 9,40,41) … …
2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数)
(3) (8,15,17), (12,35,37) … …
2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数)
(4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)
简单列出一些:
3 4 5
5 12 13
7 24 25
9 40 41
11 60 61
13 84 85
15 112 113
8,15,17
12,35,37
20,21,29
20,99,101
48,55,73
60,91,109

问题五:勾股数有哪些 设三个数分别为i,j,k
i=3 j=4 k=5;
i=5 j=12 k=13;
i=6 j=8 k=10;
i=7 j=24 k=25;
i=8 j=15 k=17;
i=9 j=12 k=15;
i=9 j=40 k=41;
i=10 j=24 k=26;
i=11 j=60 k=61;
i=12 j=16 k=20;
i=12 j=35 k=37;
i=13 j=84 k=85;
i=14 j=48 k=50;
i=15 j=20 k=25;
i=15 j=36 k=39;
i=16 j=30 k=34;
i=16 j=63 k=65;
i=18 j=24 k=30;
i=18 j=80 k=82;
i=20 j=21 k=29;
i=20 j=48 k=52;
i=21 j=28 k=35;
i=21 j=72 k=75;
i=24 j=32 k=40;
i=24 j=45 k=51;
i=24 j=70 k=74;
i=25 j=60 k=65;
i=27 j=36 k=45;
i=28 j=45 k=53;
i=30 j=40 k=50;
i=30 j=72 k=78;
i=32 j=60 k=68;
i=33 j=44 k=55;
i=33 j=56 k=65;
i=35 j=84 k=91;
i=36 j=48 k=60;
i=36 j=77 k=85;
i=39 j=52 k=65;
i=39 j=80 k=89;
i=40 j=42 k=58;
i=40 j=75 k=85;
i=42 j=56 k=70;
i=45 j=60 k=75;
i=48 j=55 k=73;
i=48 j=64 k=80;
i=51 j=68 k=85;
i=54 j=72 k=90;
i=57 j=76 k=95;
i=60 j=63 k=87;
i=65 j=72 k=97这是100以内的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式