利用单调性定义证明f(x)=根号下-x+1,在(负无穷,1]上是减函数

 我来答
黑科技1718
2022-09-02 · TA获得超过5808个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:79万
展开全部
引入自变量x1、x2,且x1<x2≦1.
显然有:1-x1>0、1-x2≧0.
∵x1<x2,∴-x1>-x2,∴1-x1>1-x2≧0,∴√(-x1+1)>√(-x2+1),
∴√(-x2+1)-√(-x1+1)<0.
∴f(x2)-f(x1)=√(-x2+1)-√(-x1+1)<0.
∴f(x)在区间(-∞,1]上是减函数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式