正定矩阵的判别方法
展开全部
矩阵正定的判定条件如下:
1、对称矩阵A正定的充分必要条件是A的n个特征值全是正数。
2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。
3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU
4、对称矩阵A正定,则A的主对角线元素均为正数。
5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。
判断一个矩阵A是否为正定矩阵方法:
1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶顺序主子式。若A的各阶顺序主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。
3、正定矩阵的特征值都是正数。正定矩阵的所有子行列式都是正数。若A为n阶正定矩阵,则A为n阶可逆矩阵。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询