待定系数法求函数解析式
待定系数法求函数解析式步骤如下:
(1)确定所求问题含待定系数的解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
例如:“已知x2-5=(2-A)·x2+Bx+C,求A,B,C的值.”只需将右式与左式的多项式中的对应项的系数加以比较后,就可得到A,B,C的值.这里的A,B,C是有待于确定的系数,这种解决问题的方法就是待定系数法。
步骤:
一、确定所求问题含待定系数的解析式。上面例题中,解析式就是:
(2一A)·x^2+Bx+C
二、根据恒等条件,列出一组含待定系数的方程。在这一题中,恒等条件是:2-A=1 B=0 C=-5
三、解方程或消去待定系数,从而使问题得到解决。 A=1 B=0 C=-5 答案就出来了。
资料扩展
待定系数法求函数解析式用法是:将一个多项式表示成另一种含有待定系数的新的形式,然后根据恒等式的性质得出系数应满足的方程或方程组,最后通过解方程或方程组便可求出待定的系数。
待定系数法
待定系数法,一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。