随机变量的数字特征

 我来答
信曼岚5h
2022-11-30 · TA获得超过941个赞
知道大有可为答主
回答量:7811
采纳率:99%
帮助的人:171万
展开全部

数学期望与方差,多维随机变量主要是协方差与相关系数

一、数学期望E(x)

数学期望表示随机变量取值的集中程度,是类似平均值的一个量,它是唯一的,因为对一个随机试验,当样本空间确定后,随机事件的概率也确定了,由概率的唯一性可得到期望的唯一性。

但是你做一系列试验,得到某随机变量的平均值可能与理论上的E(X)不同,为什么?因为你做的具体试验是用频率来代替的概率,是用频率加权平均值来代替的概率加权平均。所以我们在实际中得到的平均值都是统计意义上的均值。

数学期望在实际中的应用非常多,它可以进行投资决策,用期望来判断哪个方案的获利期望大;它可以用来进行分组优化,比如可以优化抽检方案,判断哪种方案所需资源最少。总之这些应用都要计算理论上的平均值,用数据来支撑我们的决策,而不是一时的赌博!

二、方差D(X)

方差代表着随机变量取值的离散程度,当两个随机变量的数学期望相同时,再进一步的对比就要使用方差了,比如血压的比较,投资方案的选取,是要稳健型,还是要激进型?比如仪器的比较,测量数据稳定了好。所以方差主要应用在对离散程度的比较方面。

三、协方差cov(x,y)与相关系数ρxy

多维随机变量之间的联系可由联合密度或联合分布来给出,但太不直观了,所以需要一个数字特征来直观地表现这种联系,故引入了协方差,对于超过二维的使用协方差矩阵。

协方差cov(x,y)有明显的缺点,当X,Y同时扩大k倍时,cov(X,Y)扩大k^2倍,改进方法是引入相关系数,相关系数实际上X,Y的标准化变量的协方差,或者称为协方差的标准化。

它反映了两个随机变量间的线性关系,相关系数越大,线性关系越强,但注意相关系数只考察变量间的线性关系,当相关系数为0不代表X,Y之间没有关系,而是没有线性关系!只要二维正态分布的相关系数为0与独立是等价的。



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
拉索生物
2024-11-08 广告
苏州拉索生物芯片科技有限公司是国内首家实现高密度固相基因芯片自主研发、生产和商业化的企业,可提供包含芯片(可定制)、扫描设备、试剂、专业算法及配套软件在内的一体化固相基因芯片解决方案。... 点击进入详情页
本回答由拉索生物提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式