复合函数如何求导
复合函数求导法则如下:
一般地,对于函数y=f(u)和u=g(ⅹ)复合而成的函数y=f(g(ⅹ)),它的导数与函数y=f(u),u=g(x)的导数间的关系为yⅹ'=yu'·uⅹ',即y对x的导数等于y对u的导数与u对x导数的乘积。
总的公式f'[g(x)]=f'(g)×g'(x)
比如说:求ln(x+2)的导函数
[ln(x+2)]'=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x'】 ×1【注:1即为(x+2)的导数】
复合函数求导的步骤:
1、分层:选择中间变量,写出构成它的内,外层函数。
2、分别求导:分别求各层函数对相应变量的导数。
3、相乘:把上述求导的结果相乘。
4、变量回代:把中间变量回代。
主要方法:
先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。例如,复合函数求导。
求复合函数的导数注意:
1、分解的函数通常为基本初等函数。
2、求导时分清是对哪个变量求导。
3、计算结果尽量简单。
4、对含有三角函数的函数求导,往往需要利用三角恒等变换公式,对函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导。
5、分析待求导的函数的运算结构,弄清函数是由哪些基本初等函数通过何种运算而构成的,确定所需的求导公式。