紫外光谱仪的原理及应用
紫外可见吸收光谱产生的原理及应用如下:
紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。
紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱有两个重要的特征:最大吸收峰位置(λmax)以及最大吸收峰的摩尔吸光系数(κmax)。最大吸收峰所对应的波长代表着化合物在紫外可见光谱中的特征吸收。而其所对应的摩尔吸收系数是定量分析的依据。
紫外可见吸收光谱中重要的概念:生色团:产生紫外或者可见吸收的不饱和基团,一般是具有n电子和π电子的基团,如C=O, C=N等。当出现几个生色团共轭时,几个生色团所产生的吸收带将消失,取而代之的是新的共轭吸收带,其波长比单个生色团的吸收波长长,强度也增强。
助色团:本身无紫外吸收,但可以使生色团吸收峰加强或(和)使吸收峰红移的基团,如OH,Cl等红移:最大吸收峰向长波长方向移动。蓝移:最大吸收峰向短波长方向移动。增(减)色效应:使吸收强度增强(减弱)的效应。2. 价电子跃迁的类型以及吸收带
σ→σ*跃迁:吸收能量较高,一般发生在真空紫外区。饱和烃中的C-C属于这种跃迁类型。如乙烷C-C键σ→σ*跃迁,λmax为135nm。
(注:由于一般紫外可见分光光度计只能提供190~850nm范围的单色光,因此无法检测σ→σ*跃迁)n→σ*跃迁:含有O、N、S等杂原子的基团,如-NH2、-OH-、-SH等可能产生n→σ*跃迁,摩尔吸光系数较小。
π→π*跃迁:有π电子的基团,如C=C,C≡C,C=O等,会发生π→π*跃迁,一般位于近紫外区,在200 nm左右,εmax≥104 L·mol-1·cm-1,为强吸收带。K带:共轭体系的π→π*跃迁又叫K带,与共轭体系的数目、位置和取代基的类型有关。
B带:芳香族化合物的π→π*跃迁而产生的精细结构吸收带叫做B带。
2024-07-09 广告