矩阵A满足A^2+5A-4E=O,证明A-3E可逆,并求其逆.
展开全部
(A-3E)(A+8E)+20E=A^2+5A-4E=O
所以
(A-3E)(A+8E)= -20E
所以|A-3E||A+8E|=|-20E|≠0
所以|A-3E|≠0
所以A-3E可逆
由于(A-3E)(A+8E)= -20E
即(A-3E)[(-1/20)(A+8E)]= E
所以(A-3E)^(-1)=(-1/20)(A+8E)
所以
(A-3E)(A+8E)= -20E
所以|A-3E||A+8E|=|-20E|≠0
所以|A-3E|≠0
所以A-3E可逆
由于(A-3E)(A+8E)= -20E
即(A-3E)[(-1/20)(A+8E)]= E
所以(A-3E)^(-1)=(-1/20)(A+8E)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
东莞大凡
2024-08-07 广告
2024-08-07 广告
导热系数标准板的标定是确保测量准确性的关键步骤。在大凡光学科技有限公司,我们严格遵循标定流程,使用标准参比板在特定条件下进行测试。标定过程中,我们确保参比板干燥且质量恒定,控制适当的压力与温差范围。实验结束后,我们依据实验数据与理论值计算标...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询