一道定积分证明题, 设f(x)在[-a,a]上连续,证明∫(0,a)f(x)dx=2∫(0,a/2)f(a-2x)dx 我来答 1个回答 #热议# 空调使用不当可能引发哪些疾病? 黑科技1718 2022-09-08 · TA获得超过5898个赞 知道小有建树答主 回答量:433 采纳率:97% 帮助的人:82.7万 我也去答题访问个人页 关注 展开全部 你把 a-2x=t 则 等式右边积分限变为 (a,o) ∫(0,a/2)f(a-2x)dx =∫(a,o)f(t)d(a-t/2)=-1/2∫(a,0)f(t)d(t) 还元 =-1/2∫(a,0)f(x)d(x) 在乘以2倍 得原式 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: