y=y(x)由方程 [e^(x+y)]+sin(xy)=1确定,求y'(x)及y'(0)
2个回答
展开全部
e^(x+y) + sin(xy) = 1, x = 0 时, y = 0
两边对 x 求导, 得 (1+y')e^(x+y) + (y+xy')cos(xy) = 0
y'(x) = -[e^(x+y)+ycos(xy)]/[e^(x+y)+xcos(xy)]
y'(0) = -1
两边对 x 求导, 得 (1+y')e^(x+y) + (y+xy')cos(xy) = 0
y'(x) = -[e^(x+y)+ycos(xy)]/[e^(x+y)+xcos(xy)]
y'(0) = -1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询