怎么解齐次线性方程组?
1个回答
展开全部
只有零解的充要条件是R(A)=n。
特别当A是方阵时 |A|≠0。
有非零解时,R(A)<n。
特别当A是方阵时 |A|=0。
如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。
求解步骤
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵。
2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束。
若r(A)=r<n(未知量的个数),则原方程组有非零解。
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组。
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询