求下列积分,积分符号(x/16)e^(xt-(x/4))dx.范围 0 到正无穷
1个回答
展开全部
∫[0,+无穷)(x/16) e^(-x/4)dx
=∫[0,+无穷) (-x/4)de^(-x/4)
=-∫[0,+无穷)e^(-x/4)d(-x/4)
= -(0-1)=1
∫[0,+无穷)(x/16) e^(xt-x/4)dx
=(1/(t-1/4))∫[0,+无穷) (x/16)de^(xt-x/4)
=-1/[16(t-1/4)∫[0,+无穷)e^(xt-x/4)dx
= -1/[16(t-1/4)^2](0-1)=1/(16t^2-8t+1)
=∫[0,+无穷) (-x/4)de^(-x/4)
=-∫[0,+无穷)e^(-x/4)d(-x/4)
= -(0-1)=1
∫[0,+无穷)(x/16) e^(xt-x/4)dx
=(1/(t-1/4))∫[0,+无穷) (x/16)de^(xt-x/4)
=-1/[16(t-1/4)∫[0,+无穷)e^(xt-x/4)dx
= -1/[16(t-1/4)^2](0-1)=1/(16t^2-8t+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询