求助,请问有人知道这个不定积分吗?

 我来答
吉禄学阁

2023-05-15 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62493

向TA提问 私信TA
展开全部
  • 根式换元法:

  • 设√(x+2)=t,则x=(t^2-2),代入得:

    ∫x√(x+2)dx

    =∫t*(t^2-2)d(t^2-2),

    =2∫t^2*(t^2-2)dt,

    =2∫(t^4-2t^2)dt,

    =2/5*t^5-4/3*t^3+C,

    =2/5*(x+2)^(5/2)-4/3*(x+2)^(3/2)+C,

    请点击输入图片描述

  • 凑分法不定积分:

  • ∫x√(2x^2+1)^3dx

    =(1/2)∫√(2x^2+1)^3dx^2

    =(1/4)∫√(2x^2+1)^3d2x^2

    =(1/4)∫(2x^2+1)^(3/2)d(2x^2+1)

    =(1/4)*(2/5)* (2x^2+1)^(5/2)+C.

    =(1/10)* (2x^2+1)^(5/2)+C.

    请点击输入图片描述

  • 分部积分法计算不定积分:

  • ∫x^4 (lnx)^2dx

    =(1/5)∫(lnx)^2dx^a11,以下第一次使用分部积分法,

    =(1/5) (lnx)^2*x^5-(1/5)∫x^5d(lnx)^2

    =(1/5) (lnx)^2*x^5-(2/5)∫x^5*lnx*(1/x)dx

    =(1/5) (lnx)^2*x^5-(2/5)∫x^4*lnxdx

    =(1/5) (lnx)^2*x^5-(2/25)∫lnxdx^5,以下第二次使用分部积分法,

    请点击输入图片描述

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5dlnx

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5*1/xdx

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^adx

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/125)x^5+c

    =x^5 [(1/5) (lnx)^2-(2/25)lnx+(2/125)]+c

    =(1/125)x^5 [25 (lnx)^2-10lnx+2]+c.

    请点击输入图片描述

  • 凑分及分部积分法

  • ∫(10x^2+x+1)lnxdx

    =∫lnxd(10x^3/3+x^2/2+x),对幂函数部分进行凑分,

    =lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dlnx

    =lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dx/x

    =lnx*(10x^3/3+x^2/2+x)-∫(10x^2/3+x/2+1)dx

    =lnx*(10x^3/3+x^2/2+x)-(10x^3/9+x^2/4+x)+C。

    请点击输入图片描述

  • 不定积分概念

  • 设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

    其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

    请点击输入图片描述

  • 不定积分的计算

  • 求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

    不定积分的主要计算方法有:凑分法、公式法、第一类换元法、第二类换元法、分部积分法和泰勒公式展开近似法等。

    请点击输入图片描述

橘里橘气yo
2022-11-25 · TA获得超过252个赞
知道答主
回答量:117
采纳率:83%
帮助的人:15.7万
展开全部

不建议采取截止本回答发出时已有的其他回答,下图展示了使用分部积分法计算这个不定积分的正确步骤。

想要计算这个不定积分,我们知道这个f(x)在全区间上都是连续函数,因此f(x)原函数的一定是存在的。

但是,有原函数并不代表它能够用基本初等函数形式来表达。

故我们可以考虑,使用泰勒公式将f(x)进行展开为幂级数,计算其收敛域后再计算它的不定积分。

①使用麦克劳林公式对f(x)=e^(x^2)进行部分展开,可以改写为一个幂级数。

②根据幂级数的收敛域求法:

求①中所得幂级数的收敛半径R:

则①中幂级数的收敛域为I = (-∞,+∞)。

③根据幂级数求和函数的性质:

可以计算问题中的不定积分:

该结果中的幂级数的收敛域与原级数相同,都为I = (-∞,+∞)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式