样本的方差与总体方差的关系式是

 我来答
生活小达人164I
高能答主

2022-11-30 · 世界很大,慢慢探索
知道小有建树答主
回答量:1438
采纳率:97%
帮助的人:35.3万
展开全部

样本方差的期望等于总体方差,证明如下:

设总体为X,抽取n个i。i。d。的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn)/n。

其样本方差为S =( (Y-X1)^2 + (Y-X2)^2 + ...+ (Y-Xn)^2 ) / (n-1)。

为了记号方便,我们只看S的分子部分,设为A,则EA=E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2))=E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )。

注意 EX1 = EX2= EXn = EY = EX。

VarX1 = VarX2 =  VarXn = VarX = E(X^2) - (EX)^2。

VarY = VarX / n 。

所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)= n(VarX + (EX)^2) - n * (VarX/n + (EX)^2)= (n-1) VarX,所以 E S = VarX;得证。

解释:

1、在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX,其中E(X)是X的期望值,X是变量值,公式中的E是期望值expected value的缩写,意为“变量值与其期望值之差的平方和”的期望值。

2、平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。 标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1。5的正态分布,形成无偏估计。

3、研究随机变量与其均值的偏离程度是十分必要的。那么,用怎样的量去度量这个偏离程度呢?容易看到E[|X-E[X]|]能度量随机变量与其均值E(X)的偏离程度。但由于上式带有绝对值,运算不方便,通常用量E[(X-E[X])2] 这一数字特征就是方差。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
**算法安全自评估报告**本报告旨在对我司所使用的核心算法进行安全自评估。通过内部审查,确认算法设计遵循行业实践,加密措施得当,数据输入处理严格验证,以防范注入攻击。同时,定期进行算法审计与漏洞扫描,确保无已知安全漏洞。针对潜在风险,已制定... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式