等腰三角形底边任意一点到两腰距离之和是否为定值?
展开全部
分类: 教育/科学 >> 学习帮助
问题描述:
详细阿!说出为什么?
解析:
等于一条腰上的高
在底边BC上任取一点为D,设三角形两腰为AB AC
连结AD。过D作DE⊥AB DF⊥AC
△ABD的面积=1/2*DE*AB
△ADC的面积=1/2*DF*AC
因为AB=AC
所以△ABC的面积=△ABD+△ADC=1/2*(DE+DF)*AB
又因为△ABC的面积=1/2*(AB边上的高)*AB
所以AB边上的高=DE+DF
所以底边上任意一点到两腰距离之和等于一条腰上的高
问题描述:
详细阿!说出为什么?
解析:
等于一条腰上的高
在底边BC上任取一点为D,设三角形两腰为AB AC
连结AD。过D作DE⊥AB DF⊥AC
△ABD的面积=1/2*DE*AB
△ADC的面积=1/2*DF*AC
因为AB=AC
所以△ABC的面积=△ABD+△ADC=1/2*(DE+DF)*AB
又因为△ABC的面积=1/2*(AB边上的高)*AB
所以AB边上的高=DE+DF
所以底边上任意一点到两腰距离之和等于一条腰上的高
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询