已知数列{an}是等比数列,a2=2,a5=6,则a1a2+a2a3+a3a4+...+ana(n+1)=?
展开全部
a1a2+...+ana(n+1)=S
a1a2+...+ana(n+1)=a1*a1*q+a2*a2*q...an*an*q=S
a2a2+...+anan=S/q-a1*a1=S/q-a2*a2/(q^2)
a1a2+...+ana(n+1)=a2*a2/q+...+an*an/q+a(n+1)*a(n+1)/q=S
a2a2+...+anan=S*q-a(n+1)*a(n+1)=S*q-a2*a2*(q^(2n-2))
S/q-a2*a2/(q^2)=S*q-a2*a2*(q^(2n-2))
S*q-a2*a2=S*(q^3)-a2*a2*(q^(2n))
把a2=2代入上式,得
S*q-4=S*(q^3)-4*(q^(2n))
S=4*(q^(2n)-1)/(q^3-q)
q^3=a5/a2=6/2=3
把q值代入上式,化简(输入太繁琐了)
好像与提供的答案有出入,请核对,3,数列{ana(n+1)}也是等比数列,0,已知数列{an}是等比数列,a2=2,a5=6,则a1a2+a2a3+a3a4+...+ana(n+1)=
2^(2n+1) -2/3
a1a2+...+ana(n+1)=a1*a1*q+a2*a2*q...an*an*q=S
a2a2+...+anan=S/q-a1*a1=S/q-a2*a2/(q^2)
a1a2+...+ana(n+1)=a2*a2/q+...+an*an/q+a(n+1)*a(n+1)/q=S
a2a2+...+anan=S*q-a(n+1)*a(n+1)=S*q-a2*a2*(q^(2n-2))
S/q-a2*a2/(q^2)=S*q-a2*a2*(q^(2n-2))
S*q-a2*a2=S*(q^3)-a2*a2*(q^(2n))
把a2=2代入上式,得
S*q-4=S*(q^3)-4*(q^(2n))
S=4*(q^(2n)-1)/(q^3-q)
q^3=a5/a2=6/2=3
把q值代入上式,化简(输入太繁琐了)
好像与提供的答案有出入,请核对,3,数列{ana(n+1)}也是等比数列,0,已知数列{an}是等比数列,a2=2,a5=6,则a1a2+a2a3+a3a4+...+ana(n+1)=
2^(2n+1) -2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询