什么是极大无关组?
1个回答
展开全部
极大无关组的定义
设S是一个n维向量组,α1,α2,...αr 是S的一个部分组,如果
(1) α1,α2,...αr 线性无关;
(2) 向量组S中每一个向量均可由此部分组线性表示,
那么α1,α2,...αr 称为向量组S的一个极大线性无关组,或极大无关组。
(1)只含零向量的向量组没有极大无关组。
(2)一个线性无关向量组的极大无关组就是其本身。
(3)极大线性无关组对于每个向量组来说并不唯一。但是每个向量组的极大线性无关组都含有相同个数的向量。
(4) 齐次方程组的解向量的极大无关组为基础解系。
设S是一个n维向量组,α1,α2,...αr 是S的一个部分组,如果
(1) α1,α2,...αr 线性无关;
(2) 向量组S中每一个向量均可由此部分组线性表示,
那么α1,α2,...αr 称为向量组S的一个极大线性无关组,或极大无关组。
(1)只含零向量的向量组没有极大无关组。
(2)一个线性无关向量组的极大无关组就是其本身。
(3)极大线性无关组对于每个向量组来说并不唯一。但是每个向量组的极大线性无关组都含有相同个数的向量。
(4) 齐次方程组的解向量的极大无关组为基础解系。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询