初三两道数学题目!~大家来解答(几何)3Q
1.在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥AC于F,则PE+PF的值为?2.已知:在等腰梯形ABCD中AD‖BC,对角线AC⊥BD...
1.在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥AC于F,则PE+PF的值为?
2.已知:在等腰梯形ABCD中AD‖BC,对角线AC⊥BD,AD=3,BC=7,则梯形的高是?
要求步骤明了………… 展开
2.已知:在等腰梯形ABCD中AD‖BC,对角线AC⊥BD,AD=3,BC=7,则梯形的高是?
要求步骤明了………… 展开
展开全部
B
等五分钟 我现在做答案
1.在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥AC于F,则PE+PF的值为?
2.已知:在等腰梯形ABCD中AD‖BC,对角线AC⊥BD,AD=3,BC=7,则梯形的高是?
要求步骤明了…………
如图 PE为△APO的高,PF为△DPO的高,
S△APO=3*4/4=3,S△DPO=3*4/4=3。
PE=PF,PE*AO*1/2=3,PE*5/2*1/2=3
PE=3*4/5=12/5=PF
所以PE+PF=12/5
如图,AD//BC,----》 △AOD ∽ △COB
有S△AOD :S△COB=(AD*GO) :(BC*FO)
对角线AC⊥BD ===》∠DOC=∠AOB=∠AOD=∠BOC=90°
ABCD为等腰梯形 容易证明 AO=DO,BO=CO。
所以 △AOD 和 △BOC为等腰直角三角形
GO ,FO都为斜边上的高 所以
GO=1/2*AD=3/2, FO=1/2*BC=7/2
所以梯形的高 GF=GO+FO=5
参考资料: http://hiphotos.baidu.com/%B0%AE%C4%E3%C1%BA%BE%A7%BE%A7/pic/item/5684a30e9db745fc37d12256.jpg
展开全部
1.三角形PDF相似DAB,qd/bd=pf/ab=pf/3
三角形APE相似ACD,qa/ac=pe/cd=pe/3
因为bd=ac所以pf/3+pe/3=qd/bd+qa/bd=4/5
pe+pf=12/5
2.延长BC,在D点做平行线平行于AC与BC交于O,于是BD垂直DO ,ACOD为平行四边形
底边AO=AB+BO=7+3=10,由于该梯形为等腰梯形,则其高线为斜边的一半=5
所以答案为
1. 12/5
2. 5
三角形APE相似ACD,qa/ac=pe/cd=pe/3
因为bd=ac所以pf/3+pe/3=qd/bd+qa/bd=4/5
pe+pf=12/5
2.延长BC,在D点做平行线平行于AC与BC交于O,于是BD垂直DO ,ACOD为平行四边形
底边AO=AB+BO=7+3=10,由于该梯形为等腰梯形,则其高线为斜边的一半=5
所以答案为
1. 12/5
2. 5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2
过点D作DE//AC交BC的延长线于点F
所以四边形ADCF为平行四边形
所以CF=AD=3
所以BF=10
AC=DF=BD
角BDF=90
所以高=10÷2=5
过点D作DE//AC交BC的延长线于点F
所以四边形ADCF为平行四边形
所以CF=AD=3
所以BF=10
AC=DF=BD
角BDF=90
所以高=10÷2=5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
忘了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询