如何理解“ P(AB)- P(A) P(B)”?

 我来答
ocean_lan
2023-01-16
知道答主
回答量:13
采纳率:0%
帮助的人:2.1万
展开全部
根据概率的性质可知
0≦P(AB)≦P(A)≦1
0≦P(AB)≦P(B)≦1
因此有
0≦P(AB)P(AB)≦P(A)P(B)≦1
带入欲证明的不等式左边
则有:|P(AB)-P(A)P(B)|≦|P(AB)-P(AB)P(AB)| ---(1)
若能证明上述不等式(1)右边项小于等1/4,即|P(AB)-P(AB)P(AB)|≦1/4 ---(2)
则结论得证。

设P(AB)=x,根据概率知识可知 0≦x≦1, 可得不等式
|x-x^2|≦1/4 -----(3)
|x^2-x+1/4-1/4|≦1/4
|(x-1/2)^2- 1/4|≦1/4
-1/4 ≦ (x-1/2)^2 - 1/4 ≦ 1/4
0≦ (x-1/2)^2 ≦ 1/2 ---(4)
当 0≦x≦1时,上述不等式(4)成立,因此表达式(3)(2)依次成立,故由(1)(2)式得
|P(AB)-P(A)P(B)|≦|P(AB)-P(AB)P(AB)| ≦ 1/4
即不等式 |P(AB)-P(A)P(B)|≤1/4 得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式