小学二年级趣味数学小故事
【篇一】
鸡兔同笼这个问题,是我国古代着名趣题之一。大约在1500年前,《孙子算经》就记载了这个搞笑的问题。书中是这样叙述的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上方数,有35个头;从下方数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想明白《孙子算经》中是如何解答这个问题的吗?
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。
因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
【篇二】
答案是:先使用五升的水壶装满水,然后倒到六升的水壶里面,这个时候,再将五升的水倒一些在六升的水壶里面,六升的水壶就满了,这个时候,五升的水壶里还有四升的水。然后把六升的水壶的水倒掉,把五升的水倒在六升的水壶里,这个时候,六升的水壶就只有四升的水了,然后将五升的水壶装满,装到六升壶里去,然后六升的壶满了,这个时候,五升的水壶里就剩下我们要的三升水了。
一个农民带了三只小兔子去集市,每只小兔子大概有3~4千克,但是,农夫的秤只能够秤5千克,农民,如何进行称量呢?
答案是:先把三只放到一齐来称,然后拿出一只,称量之后算差即可。
【篇三】
一天,小“3”到数学商店买了一支铅笔,小“4”说:“你应付1元5角4分。”
小“3”付了1元5角后问:“还有4分可怎样付呀?”小“4”忙说:“这4分钱你不用付了。”小“3”疑惑地问道:“那你不是要吃亏了?”“不,这是本店的一个规定,叫‘四舍五入’。凡是4分钱或4分钱以下都舍去,如果是5分或5分钱以上,那就收1角钱。”小“4”和蔼可亲地解释道。小“3”高兴地说:“多谢你,你真好!”
“对呀,我也个性喜欢4。”“25”跑过来说,“因为25×4=100,算起来比较简便,例如:25×87×4=25×4×87,这样算起来不是又快又简便吗?!”
“不错,的确又快又简便,我也喜欢4。”原先是“29”。“25”忙问道:“咦,你怎样也会喜欢‘4’了?”“29”不慌不忙地说:“这你们就不明白了,一般年份里的2月份都是28天,只有公历年份是4的倍数的那一年,二月份才是29天,我4年才轮到一次,当然喜欢‘4’了。但是公历年份是整百的,务必是4百的倍数,二月份才有29天,这样的年份叫闰年。”
“啊,‘4’的用处可真大呀!”“25”赞叹道。
这位“4”服务员真是个既温柔又惹人喜欢的服务员。