余子式的概念是什么?
展开全部
余子式即去掉该元素所在行和列剩下部分的行列式(n-1阶),另外还要明确第二个概念就是代数余子式,代数余子式是在余子式基础上再乘(-1)^(m+n)。
主要信息:
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
展开全部
余子式是指一个矩阵A,将A的某些行与列去掉之后所余下的方阵的行列式。相应的方阵有时被称为余子阵。行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算,为此,引入了余子式和代数余子式的概念。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
余子式即去掉该元素所在行和列剩下部分的行列式(n-1阶),
另外还要明确第二个概念就是代数余子式,代数余子式是在余子式基础上再乘(-1)^(m+n)
另外还要明确第二个概念就是代数余子式,代数余子式是在余子式基础上再乘(-1)^(m+n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询