共轭复数的运算是什么?
一个复数乘以它的共轭复数,结果是这个复数模的平方。因为(x+yi)(x+yi)=x∧2+y∧2
两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是"共轭"一词的来源。
两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭"。如果用z表示x+yi,那么在z字上面加个"一"就表示x-yi,或相反。
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i。
扩展资料:
代数特征:
1、减法法则
两个复数的差为实数之差加上虚数之差(乘以i)
即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i
2、乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2 = -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
即:z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=(ac-bd)+(bc+ad)i.
3、除法法则
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
参考资料来源:百度百科-共轭复数