设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,

P满足OP向量=1/2(OA向量+OB向量),N(1/2,1/2)当L绕M旋转时求(1)动点P的诡计方程(2)N与P的最大值.... P满足OP向量=1/2(OA向量+OB向量),N(1/2,1/2)当L绕M旋转时求(1)动点P的诡计方程(2)N与P的最大值. 展开
百度网友a48f69c
2008-10-18 · TA获得超过1267个赞
知道小有建树答主
回答量:195
采纳率:0%
帮助的人:0
展开全部
设AB所在直线的斜率为K,A(XA,YA),B(XB,YB),P(XP,YP)
①XP=(XA+XB)/2
②YP=(YA+YB)/2
③XA^2+YA^2/4=1
④XB^2+YB^2/4=1
③-④化简,并有①,②代入可得XP/YP=-K/4(过程略)
⑤YP=-4*XP/K
又⑥YP=K*XP+1(P是AB中点,一定落在直线上)
⑤*(⑥-1)=-4*XP^2,化简得;
X^2/(1/16)+(Y-1/2)^2/(1/4)=1
当K=0时,P(0,1),等式成立
当K不存在时,P(0,0),等式成立
.........
N为P所在椭圆的中心,NP向量的模的最小值与最大值分别是该椭圆的半短轴与半长轴。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式