用向量法证明三角形ABC的三条中线交于一点P
向量OP=1/3(向量OA+向量OB+OC向量)
注意:要求用向量法,不使用坐标 展开
先假设两条中线AD,BE交与P点
连接CP,取AB中点F连接PF
PA+PC=2PE=BP
PB+PC=2PD=AP
PA+PB=2PF
三式相加
2PA+2PB+2PC=BP+AP+2PF
3PA+3PB+2PC=2PF
6PF+2PC=2PF
PC=-2PF
所以PC,PF共线,PF就是中线
所以ABC的三条中线交于一点P
连接OD,OE,OF
OA+OB=2OF
OC+OB=2OD
OC+OC=2OE
三式相加
OA+OB+OC=OD+OE+OF
OD=OP+PD
OE=OP+PE
OF=OP+PF
OA+OB+OC=3OP+PD+PE+PF=3OP+1/2AP+1/2BP+1/2CP
由第一问结论
2PA+2PB+2PC=BP+AP+CP
2PA+2PB+2PC=0
1/2AP+1/2BP+1/2CP
所以OA+OB+OC=3OP+PD+PE+PF=3OP
向量OP=1/3(向量OA+向量OB+OC向量)
几何向量的概念
在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。
不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
连接CP,取AB中点F连接PF
PA+PC=2PE=BP
PB+PC=2PD=AP
PA+PB=2PF
三式相加
2PA+2PB+2PC=BP+AP+2PF
3PA+3PB+2PC=2PF
6PF+2PC=2PF
PC=-2PF
所以PC,PF共线,PF就是中线
所以ABC的三条中线交于一点P
连接OD,OE,OF
OA+OB=2OF
OC+OB=2OD
OC+OC=2OE
三式相加
OA+OB+OC=OD+OE+OF
OD=OP+PD
OE=OP+PE
OF=OP+PF
OA+OB+OC=3OP+PD+PE+PF=3OP+1/2AP+1/2BP+1/2CP
由第一问结论
2PA+2PB+2PC=BP+AP+CP
2PA+2PB+2PC=0
1/2AP+1/2BP+1/2CP
所以OA+OB+OC=3OP+PD+PE+PF=3OP
向量OP=1/3(向量OA+向量OB+OC向量)