1个回答
展开全部
an>0
(a0+a1+a2+...+an)/2>=根号(a0a1a2...an)
n=1时,即证(a0+a1)/2>=根号(a0a1)
根据基本不等式,a0+a1>=2根号(a0a1)
(a0+a1)/2>=根号(a0a1)
n=k时,(a0+a1+...+ak)/2>=根号(a0a1...ak)成立
要证明(a0+a1+...+ak+a(k+1))/2>=根号(a0a1...aka(k+1))
令a0+a1+...+ak=t a0a1...ak=n
k+a(k+1)>=2根号(k*
要证明(a0+a1+...+ak+a(k+1))/2>=根号(a0a1...aka(k+1))
(a0+a1+...+ak)+a(k+1)>=2根号(a0+a1+...+ak)*a(k+1))
(a0+a1+...+ak)a(k+1)>=2根号(a0a1...ak)*a(k+1)>=2根号(a0a1...aka(k+1))
因此算术平均值大于等于几何平均值
好象错了....
你还是看看这个网页吧
http://www.bmrtvu.com:81/media_file/rm/ip2/2002_5_27/gdds/gdds6/htm/gdds525.htm
(a0+a1+a2+...+an)/2>=根号(a0a1a2...an)
n=1时,即证(a0+a1)/2>=根号(a0a1)
根据基本不等式,a0+a1>=2根号(a0a1)
(a0+a1)/2>=根号(a0a1)
n=k时,(a0+a1+...+ak)/2>=根号(a0a1...ak)成立
要证明(a0+a1+...+ak+a(k+1))/2>=根号(a0a1...aka(k+1))
令a0+a1+...+ak=t a0a1...ak=n
k+a(k+1)>=2根号(k*
要证明(a0+a1+...+ak+a(k+1))/2>=根号(a0a1...aka(k+1))
(a0+a1+...+ak)+a(k+1)>=2根号(a0+a1+...+ak)*a(k+1))
(a0+a1+...+ak)a(k+1)>=2根号(a0a1...ak)*a(k+1)>=2根号(a0a1...aka(k+1))
因此算术平均值大于等于几何平均值
好象错了....
你还是看看这个网页吧
http://www.bmrtvu.com:81/media_file/rm/ip2/2002_5_27/gdds/gdds6/htm/gdds525.htm
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询