算术平均值大于等于几何平均值

如何用数学归纳法证明"算术平均值大于等于几何平均值"要详细的证明过程... 如何用数学归纳法证明"算术平均值大于等于几何平均值"
要详细的证明过程
展开
伟1990
2008-10-21 · TA获得超过1.8万个赞
知道大有可为答主
回答量:1362
采纳率:0%
帮助的人:0
展开全部
an>0
(a0+a1+a2+...+an)/2>=根号(a0a1a2...an)
n=1时,即证(a0+a1)/2>=根号(a0a1)
根据基本不等式,a0+a1>=2根号(a0a1)
(a0+a1)/2>=根号(a0a1)

n=k时,(a0+a1+...+ak)/2>=根号(a0a1...ak)成立
要证明(a0+a1+...+ak+a(k+1))/2>=根号(a0a1...aka(k+1))
令a0+a1+...+ak=t a0a1...ak=n
k+a(k+1)>=2根号(k*
要证明(a0+a1+...+ak+a(k+1))/2>=根号(a0a1...aka(k+1))
(a0+a1+...+ak)+a(k+1)>=2根号(a0+a1+...+ak)*a(k+1))
(a0+a1+...+ak)a(k+1)>=2根号(a0a1...ak)*a(k+1)>=2根号(a0a1...aka(k+1))

因此算术平均值大于等于几何平均值

好象错了....
你还是看看这个网页吧
http://www.bmrtvu.com:81/media_file/rm/ip2/2002_5_27/gdds/gdds6/htm/gdds525.htm
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式