为什么cosx-1和-(x^2)/2是等价无穷小,希望有具体步骤和过程

fallsonata
推荐于2017-11-26 · TA获得超过9834个赞
知道小有建树答主
回答量:710
采纳率:100%
帮助的人:0
展开全部
cosx-1和-(x^2)/2是等价无穷小,即1-cosx和(x^2)/2为等阶无穷小
还得说明x→0,否则x→∞,1-cosx与x^2/2就不能是等阶无穷小.

应该是当x→0,1-cosx~x^2/2,
其实这个的严格证明还得用泰勒公式,用泰勒公式将cosx在x0=0处展开得:
cosx=1-x^2/2+x^4/4-x^6/6+...+(-1)^nx^2n/2n...

从而1-cosx=x^2/2-x^4/4+x^6/6+...+(-1)^nx^2n/2n...
故x^2/2是1-cosx的主部,
所以lim[(1-cosx)/(x^2/2)]=1(x→0),由等价无穷小量的定义可知1-cosx与x^2/2为等价无穷小量,即cosx-1和-(x^2)/2是等价无穷小量.
百度网友4dae1774f
2008-10-22 · TA获得超过287个赞
知道小有建树答主
回答量:136
采纳率:0%
帮助的人:94.3万
展开全部
根据洛比达法则,当x趋向于零时,同时求导数,前一个等于sinx,后一个等于-x,sinx/x的极限等于1,所以这两个时同阶无穷小,而且是等价的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式