用MATLAB实现频域平滑滤波以及图像去噪代码

是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在MATLAB上运行成功,必然给分。具体的实验指导书上的要求如下:频域平滑滤波实验... 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在MATLAB上运行成功,必然给分。具体的实验指导书上的要求如下:
频域平滑滤波实验步骤
1. 打开Matlab 编程环境;
2. 利用’imread’ 函数读入图像数据;
3. 利用’imshow’ 显示所读入的图像数据;
4. 将图像数据由’uint8’ 格式转换为’double’ 格式,并将各点数据乘以
(-1)x+y 以便FFT 变换后的结果中低频数据处于图像中央;
5. 用’fft2’ 函数对图像数据进行二维FFT 变换,得到频率域图像数据;
6. 计算频率域图像的幅值并进行对数变换,利用’imshow’ 显示频率域图
像;
7. 在频率图像上去除滤波半径以外的数据(置0);
8. 计算频率域图像的幅值并进行对数变换,利用’imshow’ 显示处理过的
频域图像数据;
9. 用’ifft2’ 函数对图像数据进行二维FFT 逆变换,并用’real’函数取其实
部,得到处理过的空间域图像数据;
10. 将图像数据各点数据乘以(-1)x+y;
11. 利用’imshow’ 显示处理结果图像数据;
12. 利用’imwrite’函数保存图像处理结果数据。

图像去噪实验步骤:
1. 打开Matlab 编程环境;
2. 利用’imread’ 函数读入包含噪声的原始图像数据;
3. 利用’imshow’ 显示所读入的图像数据;
4. 以3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声
图像进行滤波处理;
5. 利用’imshow’ 显示处理结果图像数据;
6. 利用’imwrite’ 函数保存图像处理结果数据。

即使不是按这些步骤来的也没关系,只要是那个功能,能实现就OK,谢谢大家
展开
 我来答
820802461
2008-11-07 · TA获得超过2.1万个赞
知道小有建树答主
回答量:968
采纳率:100%
帮助的人:364万
展开全部
%%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%%

% the SF filter is unselective to orientation (doughnut-shaped in the SF
% domain).

[FileName,PathName,FilterIndex] = uigetfile ;
filename = fullfile(PathName, FileName) ;

[X map] = imread(filename, fmt); % read image
L = double(X); % transform to double
%%%%%%%%%%%%% need to add (-1)x+y to L

% calculate the number of points for FFT (power of 2)
fftsize = 2 .^ ceil(log2(size(L)));
% 2d fft
Y = fft2(X, fftsize(1), fftsize (2));
Y = fftshift(Y);

% obtain frequency (cycles/pixel)
f0 = floor([m n] / 2) + 1;
fy = ((m: -1: 1) - f0(1) + 1) / m;
fx = ((1: n) - f0(2)) / n;
[mfx mfy] = meshgrid(fx, fy);

% calculate radius
SF = sqrt(mfx .^ 2 + mfy .^ 2);

% SF-bandpass and orientation-unselective filter
filt = SF > k0;

A_filtered = filt .* A; % SF filtering
L_filtered = real(ifft2(ifftshift(A_filtered))); % IFFT
L_filtered = L_filtered(1: size(L, 1), 1: size(L, 2));
%%%%%%%%%%need to add (-1)x + y to L_filtered

% show
figure(1);
clf reset;
colormap gray;

% plot image
subplot(2, 2, 1);
imagesc(L);
colorbar;
axis square;
set(gca, 'TickDir', 'out');
title('original image');
xlabel('x');
ylabel('y');
imwrite(L, fullfile(FilePath, 'original image.bmp'), 'bmp') ;

% plot amplitude
A = abs(A);
A = log10(A);
% spectral amplitude
subplot(2, 2, 2);
imagesc(fx, fy, A);
axis xy;
axis square;
set(gca, 'TickDir', 'out');
title('amplitude spectrum');
xlabel('fx (cyc/pix)');
ylabel('fy (cyc/pix)');
imwrite(A, fullfile(FilePath, 'amplitude spectrum.bmp'), 'bmp') ;

% filter in the SF domain
subplot(2, 2, 3);
imagesc(fx, fy, filt);
axis xy;
axis square;
set(gca, 'TickDir', 'out');
title('filter in the SF domain');
xlabel('fx (cyc/pix)');
ylabel('fy (cyc/pix)');
imwrite(filt, fullfile(FilePath, 'filter in SF.bmp'), 'bmp') ;

% filtered image
subplot(2, 2, 4);
imagesc(L_filtered);
colorbar;
axis square;
set(gca, 'TickDir', 'out');
title('filtered image');
xlabel('x');
ylabel('y');
imwrite(filtered, fullfile(FilePath, 'filtered image.bmp'), 'bmp');

%%%%%%%%%%%%%%%%%median filter%%%%%%%%%%%%%%%%
[FileName,PathName,FilterIndex] = uigetfile ;
filename = fullfile(PathName, FileName) ;

[LNoise map] = imread(filename, fmt); % read image
L = medfilt2(LNoise, [3 3]); % remove the noise with 3*3 block

figure ;
imshow(LNoise) ;
title('image before fitlering') ;
figure
imshow(L)
title('filtered image') ;
imwrite(FilePath, 'filtered image.bmp', bmp)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式