有个泊松分布的题,高手帮忙!!!
资料:投保总人数为10000人,有15人因事故死亡,其中第一年5个,第二年7个,第三年3个,三年来平均每年亡5人。随着科学手段的增加,亡人比例将逐步降低。每位死亡人员给付...
资料:投保总人数为10000人,有15人因事故死亡,其中第一年5个,第二年7个,第三年3个,三年来平均每年亡5人。随着科学手段的增加,亡人比例将逐步降低。每位死亡人员给付保险金558448元,保期十年。折现率为7.47%。
问题1:根据泊松分布,每年死亡人员平均数是多少?
问题2:每人每年初应缴纳多少保险费。(列表)
列出计算公式 展开
问题1:根据泊松分布,每年死亡人员平均数是多少?
问题2:每人每年初应缴纳多少保险费。(列表)
列出计算公式 展开
3个回答
展开全部
率论中常用的一种离散型概率分布。若随机变量 X 只取非负整数值,取k值的概率为λke-l/k!(记作P (k;λ),其中k可以等于0,1,2,则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率 λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位。
泊松分布(Poisson distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布的概率密度函数为: P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。
(Poisson distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家(Siméon-Denis Poisson)在1838年时发表。
泊松分布的概率密度函数为:
:P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。
泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。
观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:
P(x)=(mx/x!)e-m
称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:
P(0)=e-3=0.05;
P(1)=(3/1!)e-3=0.15;
P(2)=(32/2!)e-3=0.22;
P(3)=0.22;
P(4)=0.17;……
P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。
泊松分布(Poisson distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布的概率密度函数为: P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。
(Poisson distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家(Siméon-Denis Poisson)在1838年时发表。
泊松分布的概率密度函数为:
:P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。
泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。
观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:
P(x)=(mx/x!)e-m
称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:
P(0)=e-3=0.05;
P(1)=(3/1!)e-3=0.15;
P(2)=(32/2!)e-3=0.22;
P(3)=0.22;
P(4)=0.17;……
P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
死亡平均人数5人
-
因为u=x 所以期望是5人
第二问 你缺少条件 即没有说公司多大概率是盈利的 没法做
所以给你写个大致思路
不难的
即要计算等比数列s=1/(1-0.9253^9)
计算此伯松分布《盈利率的的最大n值(书后可以查表得到)
再乘以s乘以558448/10000
你缺少条件没法算
-
因为u=x 所以期望是5人
第二问 你缺少条件 即没有说公司多大概率是盈利的 没法做
所以给你写个大致思路
不难的
即要计算等比数列s=1/(1-0.9253^9)
计算此伯松分布《盈利率的的最大n值(书后可以查表得到)
再乘以s乘以558448/10000
你缺少条件没法算
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
死亡平均人数5人
-
因为u=x 所以期望是5人
第二问 你缺少条件 即没有说公司多大概率是盈利的 没法做
所以给你写个大致思路
不难的
即要计算等比数列s=1/(1-0.9253^9)
计算此伯松分布《盈利率的的最大n值(书后可以查表得到)
再乘以s乘以558448/10000
你缺少条件没法算
只能说到这样
不好意思
-
因为u=x 所以期望是5人
第二问 你缺少条件 即没有说公司多大概率是盈利的 没法做
所以给你写个大致思路
不难的
即要计算等比数列s=1/(1-0.9253^9)
计算此伯松分布《盈利率的的最大n值(书后可以查表得到)
再乘以s乘以558448/10000
你缺少条件没法算
只能说到这样
不好意思
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询