
展开全部
1+2+3.......+N=(n+1)n/2
解题过程:
1+2+3+4+5......+n
=(n+1)+(2+n-1)+(3+n-2)+……(n/2+n/2+1)【首尾相加】
=(n+1)n/2【首尾相加得到的数相等,此时共有n/2个组合,因此结果为其乘积】
扩展资料
这是典型的等差数列求和公式,等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列求和公式(字母):
设首项为 , 末项为
, 项数为
, 公差为
, 前
项和为
, 则有:①
;
参考资料:百度百科-等差数列求和公式

2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n(n+1)(2n+1)]/6
著名公式
祝1*1+2*2+3*3+.......+n*n为自然数平方求和。
求和公式为利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
1又1/2+2又1/4+3又1/8+L L+(n+1/2^n)
=(1+2+3+...+n)+(1/2+1/4+1/8+...+1/2^n)
=n(n+1)/2+(1/2^n-1)
1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n)
1+2+3+....+n=n(n+1)
1/(1+2+3+...+n)=1/n(n+1)=1/n-1/(n+1)
所以
原式=1+1/1-1/2+1/2-1/3+1/3-1/4+....+1/n-1/(n-1)
=1+1+1/n
=2+1/n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 :[n(n+1)(2n+1)]/6 好运。
著名公式
祝1*1+2*2+3*3+.......+n*n为自然数平方求和。
求和公式为利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
1又1/2+2又1/4+3又1/8+L L+(n+1/2^n)
=(1+2+3+...+n)+(1/2+1/4+1/8+...+1/2^n)
=n(n+1)/2+(1/2^n-1)
1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n)
1+2+3+....+n=n(n+1)
1/(1+2+3+...+n)=1/n(n+1)=1/n-1/(n+1)
所以
原式=1+1/1-1/2+1/2-1/3+1/3-1/4+....+1/n-1/(n-1)
=1+1+1/n
=2+1/n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 :[n(n+1)(2n+1)]/6 好运。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1*1+2*2+3*3+.......+n*n为自然数平方求和。
求和公式为:[n(n+1)(2n+1)]/6
求和公式为:[n(n+1)(2n+1)]/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1又1/2+2又1/4+3又1/8+L L+(n+1/2^n)
=(1+2+3+...+n)+(1/2+1/4+1/8+...+1/2^n)
=n(n+1)/2+(1/2^n-1)
1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n)
1+2+3+....+n=n(n+1)
1/(1+2+3+...+n)=1/n(n+1)=1/n-1/(n+1)
所以
原式=1+1/1-1/2+1/2-1/3+1/3-1/4+....+1/n-1/(n-1)
=1+1+1/n
=2+1/n
=(1+2+3+...+n)+(1/2+1/4+1/8+...+1/2^n)
=n(n+1)/2+(1/2^n-1)
1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n)
1+2+3+....+n=n(n+1)
1/(1+2+3+...+n)=1/n(n+1)=1/n-1/(n+1)
所以
原式=1+1/1-1/2+1/2-1/3+1/3-1/4+....+1/n-1/(n-1)
=1+1+1/n
=2+1/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询