统计学中的P值应该怎么计算

 我来答
河传杨颖
高粉答主

2019-09-10 · 说的都是干货,快来关注
知道小有建树答主
回答量:745
采纳率:100%
帮助的人:20.7万
展开全部

P值的计算公式是 

=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时; 

=1-Φ(z0)  当被测假设H1为 p大于p0时; 

=Φ(z0)   当被测假设H1为 p小于p0时; 

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大小和实际问题来解决。

扩展资料

统计学中回归分析的主要内容为:

1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。

2、对这些关系式的可信程度进行检验。

3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。

4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。



参考资料来源:百度百科—P值

牵阳焱梁桃
2019-12-17 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:26%
帮助的人:617万
展开全部
统计学意义(p值)zt
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冉辰锟0Iv
推荐于2017-11-26 · TA获得超过181个赞
知道答主
回答量:349
采纳率:0%
帮助的人:0
展开全部
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;

=1-Φ(z0) 当被测假设H1为 p大于p0时;

=Φ(z0) 当被测假设H1为 p小于p0时;

其中,Φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当P值小于某个显著参数的时候(常用0.05,标记为α,给你出题那个人,可能混淆了这两个概念)我们就可以否定假设。反之,则不能否定假设。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式