1*2+2*3+3*4+...+n(n+1)= 20

如何推出... 如何推出 展开
 我来答
hehc08
推荐于2018-02-26 · TA获得超过266个赞
知道答主
回答量:19
采纳率:0%
帮助的人:20.2万
展开全部
因为 k*(k+1) = k² + k
所以 1*2 + 2*3 + 3*4 + ... + n*(n+1)
= (1²+1) + (2²+2) + (3²+3) + ... + (n²+n)
= (1²+2²+3²+...+n²) + (1+2+3+...+n)
= n(n+1)(2n+1)/6 + n(n+1)/2
= [n(n+1)/6] * (2n+1+3)
= n(n+1)(n+2)/3
爱生活的CC老师
2016-02-27 · TA获得超过1.6万个赞
知道大有可为答主
回答量:1821
采纳率:91%
帮助的人:230万
展开全部
1*2+2*3+3*4+...n*(n+1)
=1(1+1)+2(2+1)+3(3+1)+···+n(n+1)
=1²+1+2²+2+3²+3+····+n²+n
=(1+2+3+····+n)+(1²+2²+3²+···n²)
=(1+n)n/2+n(n+1)(2n+1)/6
=n(n+1)/2[1+(2n+1)/3]
=n(n+1)(n+2)/3
此题应用的两个常用的求和公式为:
1+2+3+···+n=(1+n)n/2
1²+2²+3²+···n²=n(n+1)(2n+1)/6
这种题目常用加减乘除的结合律,交换律,分配律以及拆分和拼凑来计算,找到其规律,进而得出一般结论。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhangjunyh
2015-09-23 · TA获得超过1.2万个赞
知道大有可为答主
回答量:3145
采纳率:12%
帮助的人:792万
展开全部
因为 n*(n+1) = n² + n
所以 1*2 + 2*3 + 3*4 + ... + n*(n+1)
= (1²+1) + (2²+2) + (3²+3) + ... + (n²+n)
= (1²+2²+3²+...+n²) + (1+2+3+...+n)
= n(n+1)(2n+1)/6 + n(n+1)/2
= [n(n+1)/6] * (2n+1+3)
= n(n+1)(n+2)/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
追风逐月一代
2008-11-02
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
(1*1+2*2+...n*n)+(1+2+...+n)=n*(n+1)*(2n+1)/6+n*(n+1)/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
浑浓强浩然
2020-03-11 · TA获得超过3953个赞
知道大有可为答主
回答量:3138
采纳率:27%
帮助的人:228万
展开全部
解:
设第k项为ak
ak=k(k+1)=k²+k
1×2+2×3+...+n×(n+1)
=(1²+2²+3²+...+n²)+(1+2+3+...+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式