一质点沿半径为R的圆周运动,其路程随时间变化的规律为s=bt-1/2*ct^2,其中b,c为大于零
答案如下所示:
扩展资料
质点就是有质量但不存在体积或形状的点,是物理学的一个理想化模型。在物体的大小和形状不起作用,或者所起的作用并不显著而可以忽略不计时,我们近似地把该物体看作是一个只具有质量而其体积、形状可以忽略不计的理想物体,用来代替物体的有质量的点称为质点(mass point,particle)。
中文名
质点
外文名
mass point,particle
分 类
物理学,动力学,天文学
性 质
理想化模型
具有一定质量而不计大小尺寸的物体。物体本身实际上都有一定的大小尺寸,但是,若某物体的大小尺寸同它到其他物体的距离相比,或同其他物体的大小尺寸相比是很小的,则该物体便可近似地看作是一个质点。例如行星的大小尺寸比行星间的距离小很多,行星便可视为质点-因为不计大小尺寸,所以质点在外力作用下只考虑其线运动。
由于质点无大小可言,作用在质点上的许多外力可以合成为一个力,另一方面,研究质点的运动,可以不考虑它的自旋运动。
任何物体可分割为许多质点,物体的各种复杂运动可看成许多质点运动的组合。因此,研究一个质点的运动是掌握各种物体形形色色运动的入门。
牛顿第二定律是适合于一个质点的运动规律的。有了这个定律,再配合牛顿第三定律,就构成了研究有限大小的物体的手段。所以“质点”是研究物体运动的最简单、最基本的对象。
用来代替物体的有质量而不考虑形状和大小的点。是一个理想的模型,实际上并不存在。
天文学的双星(多星)天体围绕同一质点做环绕运动。(如冥王星-卡介,地球-月球,系外双星星系)。
当研究地球绕太阳运动时,可以将地球看做质点,此时地球的大小形状对所考虑的问题无明显影响;而在研究地球与其卫星时,并不可以把地球看做质点,因为此时地球的大小形状对所研究的问题影响显著。
参考链接:质点-百度百科
切向加速度a=dV/t=d(b+ct)/dt=c
法向加速度a'=(V^2)/R=[(b+ct)^2]/R
a=a'
c=[(b+ct)^2]/R
所求时间为
t={[根号(RC)]-b}/c
广告 您可能关注的内容 |